Welcome to Assignment Heroes

KM Algorithm Hadoop

KM Algorithm Hadoop.

The current program only run one iteration of the KMeans algorithm. Please revise it (in the main function) to implement iterative processing, paste your code here, and briefly describe how it works. Were you able to successfully compile and run your program (yes/no)?

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FileUtil;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class KMeans {

public static class KMMapper
extends Mapper<Object, Text, IntWritable, Text>{

private double [][] _centroids;
private IntWritable cid = new IntWritable();

public void setup(Mapper.Context context){
Configuration conf = context.getConfiguration();
String filename = conf.get(“Centroids-file”);
_centroids = loadCentroids(filename, conf);

public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
double [] vec = parseVector(value.toString());
context.write(cid, value);

private int closest(double [] v){
double mindist = dist(v, _centroids[0]);
int label =0;
for (int i=1; i<_centroids.length; i++){
double t = dist(v, _centroids[i]);
if (mindist>t){
mindist = t;
label = i;
return label;


public static class KMReducer
extends Reducer<IntWritable, Text, IntWritable, Text> {
// write output: cid \t centroid_vector
private Text result = new Text();

public void reduce(IntWritable key, Iterable<Text> vectors,
Context context
) throws IOException, InterruptedException {
double [] sum = null;
int n=0;
for (Text vec : vectors) {
double [] v = parseVector(vec.toString());
if (sum == null) sum = v;
for (int i = 0; i < v.length; i++)
sum[i] += v[i];
n ++;
String out = Double.toString(sum[0]/n);
for (int i = 1; i < sum.length; i ++ ){
out +=  “,” + Double.toString(sum[i]/n); // csv output
context.write(key, result);

// compute square Euclidean distance between two vectors v1 and v2
public static double dist(double [] v1, double [] v2){
double sum=0;
for (int i=0; i< v1.length; i++){
double d = v1[i]-v2[i];
sum += d*d;
return Math.sqrt(sum);

// check convergence condition
// max{dist(c1[i], c2[i]), i=1..numClusters < threshold
private boolean converge(double [][] c1, double [][] c2, double threshold){
// c1 and c2 are two sets of centroids
double maxv = 0;
for (int i=0; i< c1.length; i++){
double d= dist(c1[i], c2[i]);
if (maxv<d)
maxv = d;

if (maxv <threshold)
return true;
return false;


public static double [][] loadCentroids(String filename, Configuration conf){

double [][] centroids=null;
Path p = new Path(filename);  // Path is used for opening the file.
FileSystem fs = FileSystem.get(conf);//determines local or HDFS
FSDataInputStream file = fs.open(p);
byte[] bs = new byte[file.available()];
String [] lines = (new String(bs)).split(“\n”); //lines are separated by \n
for (String line:lines)
centroids = new double[lines.length][];
for (int i = 0; i < lines.length; i++){
// cid \t centroid
String [] parts = lines[i].split(“\t”);
int cid = Integer.parseInt(parts[0]);
centroids[cid] = parseVector(parts[1]);
}catch(Exception e){
return centroids;

public static double [] parseVector(String s){
String [] itr = s.split(“,”); // comma separated
double [] v = new double[itr.length];
for (int i = 0; i < itr.length; i++)
v[i] = Double.parseDouble(itr[i]);

return v;

public static void main(String[] args) throws Exception {

// usage: hadoop jar km.jar hdfs://localhost:9000/user/your_home_directory/centroids data.hdfs output
Configuration conf = new Configuration();
conf.set(“Centroids-file”, args[0]);

Job job = Job.getInstance(conf, “KMeans”);
FileInputFormat.addInputPath(job, new Path(args[1]));
FileOutputFormat.setOutputPath(job, new Path(args[2]));
System.exit(job.waitForCompletion(true) ? 0 : 1);



KM Algorithm Hadoop


15% off for this assignment.

Our Prices Start at $11.99. As Our First Client, Use Coupon Code GET15 to claim 15% Discount This Month!!

Why US?

100% Confidentiality

Information about customers is confidential and never disclosed to third parties.

Timely Delivery

No missed deadlines – 97% of assignments are completed in time.

Original Writing

We complete all papers from scratch. You can get a plagiarism report.

Money Back

If you are convinced that our writer has not followed your requirements, feel free to ask for a refund.